
PSTAT 5A Lab 1
Welcome to the first PSTAT 5A Lab! As we will soon learn,

computers play an integral part in effectively and efficiently

performing statistical analyses. The primary goal of these Labs

is to develop the skills to communicate with computers and

learn the basic principles and language of programming.

This first lab will introduce you to the JupyterHub environment,

Python as a programming language, and some basic concepts

of programming. You will also complete a series of tasks to

familiarize yourself with the tools and concepts we will use

throughout the course.

This lab is designed to be completed during your first lab

section of the week, and it will set the foundation for the rest of

the course. Make sure to read through all the material carefully,

as it will be essential for your success in PSTAT 5A.

Structure of Labs

Every week we (the course staff) will publish a lab document,

which is intended to be completed during your Lab Section

(i.e., your first Section) of the week. Each lab document will

consist of a combination of text, tips, and the occasional task

for you to complete based on the text provided. Your TA will

cover exactly what you need to turn in at the end of each lab in

order to receive credit, but you should read all lab material

carefully and thoroughly as content from labs will appear on

quizzes and exams.

What Is Programming?

Computers, though incredibly useful, are fairly complex

machines. To communicate with them, we need to use a

specific language, known as a programming language. There

are a number of programming languages currently in use—R,

Julia, MatLab, and the language we will use for this course,

Python.

Python programs can be written in many environments (e.g.,

text editors like VS Code or in a Terminal window). For this

class we will use Jupyter Notebook (pronounced “Jew-pi-

ter”), an interactive environment thatʼs hosted online so you

donʼt have to install anything to run Python code!

🔖 Table of Contents

- PSTAT 5A Lab 1

- Structure of Labs

- What Is Programming?

- Getting Started

- Task 1

- The JupyterHub Environment

- 1. Cell Activation

- 2. Running Cells

- Cell Types

- Code Cells

- Markdown Cells

- Task 2

- Task 3

- Python as a Calculator

- Task 4

- Python Modules

- Why Use Modules?

- Importing Modules

- Finding and Installing Modules

- Task 5

- Variable Assignment

- Task 6

- Comments

- Task 7

- Basic Data Types

- Task 8

- Using Variables and Data

Types

- Task 9

- Conclusion

Getting Started

1. Navigate to (https://pstat5a.lsit.ucsb.edu)

If you are using a personal computer, you may want to

bookmark this page for easy access later.

2. Click Sign in with your UCSB NetID, and sign in.

3. Navigate to the Labs folder on the left-hand side of the

JupyterHub interface.

4. Under Notebook, click Python 3 (ipykernel).

Congratulations, you have just made your first Jupyter

notebook! Now, itʼs time for our first task:

Task 1

1. Find your new notebook in the left-hand file browser (it will

be named Untitled or Untitled1 by default).

https://pstat5a.lsit.ucsb.edu/hub/login

2. Right-click the notebook and select → Rename.

3. Rename it to Lab1 and hit Enter.

4. Watch the title bar update to Lab1.ipynb .

The JupyterHub Environment

Jupyter notebooks are built from cells—the shaded boxes you

see on screen. Hereʼs how to work with them:

Inactive cell

Appearance: light grey background

Action: click anywhere inside the cell to activate

Active cell

Appearance: colored border (green or blue)

You can now type code or Markdown here.

1. Cell Activation

Tip: Only the active cell runs when you press Run.

Click the ▶ Run button in the toolbar

Or press Shift + Enter to run and advance to the next cell

Cell Types

You can switch any cell between Code and Markdown:

Purpose: write and execute Python code

Select:

1. Click the cell

2. Choose Code from the toolbar dropdown

Run: ▶ Run button or Shift + Enter

Purpose: write formatted text, headings, lists, math, and

embed images

Select:

1. Click the cell

2. Choose Markdown from the toolbar dropdown

Render: ▶ Run button or Shift + Enter

Task 2

1. Click into the initial cell (marked by [] on the left).

2. In the toolbar dropdown (that currently says Code), select

Markdown.

3. Copy-paste the following (including the #):

4. Run the cell (▶).

5. Create a new code cell by clicking the + button in the

toolbar.

Alternatively, you can press B to add a cell below the

current one or A to add one above it.

2. Running Cells

Code Cells

Markdown Cells

Task 2

This option preserves the previous cell type

(Code or Markdown).

You can also right-click the cell and select Insert Cell

Below or Insert Cell Above.

You can also use the Insert menu at the top of the

page. > Tip: Press Shift + Enter to run a cell and

move to (or create) the next one.

6. Enter and run:

7. Observe that a new cell appears under it automatically.

Tip: Press Shift + Enter to run a cell and move to (or

create) the next one.

Task 3

1. Create a new Markdown cell labeled:

2. Create a new code cell and run:

3. Observe the SyntaxError and note how Python points to

the problem.

Note: Always read error messages, they tell you what

went wrong!

Python as a Calculator

Python follows the usual order of operations:

1. Parentheses

2. Exponents

3. Multiplication / Division

4. Addition / Subtraction

Operation Python Syntax Example Result

Addition + 2 + 2 4

Subtraction - 2 - 2 0

Multiplication * 2 * 2 4

Division / 2 / 2 1.0

Exponentiation ** 2 ** 2 4

Task 4

2 + 2

Task 3

2 plus 2

Compute the following in separate code cells:

1.

2.

Python Modules

In Python, a module is simply a file (with a .py extension) that

contains related code, functions, classes, and variables—that

you can reuse in other programs. Modules help you organize

your code, avoid naming conflicts, and leverage functionality

written by others.

Reusability: Write a function once, then import it

wherever you need it.

Organization: Group related functionality into logical units

(e.g., math operations).

Namespace Management: Keep your global namespace

clean by accessing code through the moduleʼs name.

There are several ways to bring module code into your current

script or notebook:

1. Import the entire module

2. Import specific names

3. Import with an alias

Tip: Use specific imports (from module import name) to
keep your namespace tidy, or aliases (import module as
m) for brevity.

Standard library: Modules like math , random , and
datetime come with Python.

Third-party: Install via pip install package_name
(e.g. pip install pandas).
Your own: Create my_utils.py and then import
my_utils in your project.

2 + 3

4 + 56

(1 − 3 ⋅ 45)6

Why Use Modules?

Importing Modules

import math
print(math.sin(1))

from math import sin, pi
print(sin(pi/2))

import numpy as np
arr = np.array([1, 2, 3])

Finding and Installing Modules

Modules are the building blocks of larger Python applications;

get comfortable importing and exploring them!

Task 5

1. In a code cell, type:

2. Observe the NameError.

3. In the same (or a new) cell, load the module and retry:

Variable Assignment

Variables in Python are used to store data values. You can

think of them as labels for data that you want to use later in

your program.

Assignment:

Printing:

Python is case-sensitive: my_variable ≠ My_variable .

Behind the scenes, print() is a function that takes one

or more values and displays them on the screen. Weʼll

learn what functions are and how to create our own

functions soon.

Task 6

1. Assign:

2. In a new cell, run:

– observe the NameError due to wrong capitalization.

NameError: name 'My_variable' is not defined

3. In the same cell, run:

sin(1)

from math import *
sin(1)

x = 2

print(x)

my_variable = 5

print(My_variable)

print(my_variable)

Now you should see 5 printed without any errors.

Comments

Comments are notes in your code that Python ignores when

running the program. They help you and others understand

what your code does. Comments are essential for documenting

your code, explaining complex logic, or leaving reminders for

yourself or others. They do not affect the execution of your

program.

You can add comments anywhere in your code, and they can

be on their own line or at the end of a line of code.

In Python, comments start with a # symbol. Everything after

the # on that line is considered a comment and will not be

executed by Python. You can also use multi-line comments

with triple quotes (""" or '''), which allows you to write
longer explanations or block comments that span multiple

lines. These are often used for documentation strings

(docstrings) to describe functions, classes, or modules.

You can add comments in two ways:

Inline comment: Use # to comment out a single line.

Example:

Block comment: Use triple quotes """ or ''' to

comment out multiple lines.

Example:

Task 7

Go back and add descriptive comments to some of your

previous code cells.

Basic Data Types

Python has several basic data types, which are the building

blocks for more complex data structures. The most common

ones are: - bool — boolean (e.g. True , False)

NoneType — represents the absence of a value (e.g. None)

list — ordered collection (e.g. [1, 2, 3])

tuple — immutable ordered collection (e.g. (1, 2, 3))

This is an inline comment
x = 5 # Assign 5 to x

"""
Multiple lines
of comment here
"""

dict — key-value pairs (e.g. `{“key”: “value”})

set — unordered collection of unique items (e.g. {1, 2,
3})

The most basic data types you will use in this course are:

int — integer (e.g. 1 , 42)

float — real number (e.g. 1.0 , 3.14)

str — string/text (e.g. "hello" , 'abc')

Task 8

Run each in its own cell:

Using Variables and Data Types

You can assign values to variables and use them in

expressions. Hereʼs an example:

Task 9

1. Create a new Markdown cell labeled:

2. In a new code cell, perform the following variable

assignments:

3. A new section has been added! Update the variable
num_sections to be one more than when you initially

defined it above. (Donʼt just use num_sections = 5 - think
about our discussion on updating variables above!)

4. Using comments, write down what you think the output of

each of the following expressions will be:

Then, run each expression in a separate code chunk and

comment on the results.

5. Create a new variable called course_capacity and assign

it the value of the maximum capacity of the course. (Hint:

type(1)
type(1.1)
type("hello")

Task 9

course = "PSTAT 5A"
num_sections = 4
section_capacity = 25

type(course)
type(num_sections)
num_sections * section_capacity

there are only 5 sections, and each section has a

maximum capacity of 25. Try to use your already-defined

variables as much as possible!)

Conclusion

That wraps up Lab 1! Youʼve successfully navigated the

JupyterHub environment, learned how to switch between and

run Code and Markdown cells, experimented with basic Python

expressions, and practiced variable assignment. In Lab 2, weʼll

dive deeper into Python functions, data structures, and more

advanced programming concepts. Great work, see you next

time!

